WJEC CBAC

GCE Chemistry CH2 1092-01

All Candidates' performance across questions

5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene

Reagent(s)
Observations \qquad
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene
Reagents) bromine (aqueous)
Observationsill stay orange............ cyclohexane. but
will change from orange ho colov-bss for hex-2-ene...
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
Reagents) bromine (aqueous)
Observationsill stay orange far cyclohexane, but \square
will change from orange to claw tbs for hex-2-ene. \square
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene
Reagents) Bromine (aq).
observations Color-...... change from orange todandles.
S.
avar
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene
Reagents) ... Bromine (aq)
Observations...Colar charge from orange. todau-less. \qquad
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene
Reagents) Bromine water
observations. colour change from orange to colourless for hex-2-ene but no colour change for
5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane
hex-2-ene

Reagents) Bromine water
observations colour change from orange to colourless for hex-2-ene but no colour change for
cyclohexane
Reagents) Bromine water
observations colour change from orange to coloinhess
for hex-2-2ne but no colour change for \square
(e) Carbon monoxide contains two covalent bonds and one co-ordinate bond. Explain what is meant by the terms covalent bond and co-ordinate bond, indicating the difference between them.
(e) Carbon monoxide contains two covalent bonds and one co-ordinate bond. Explain what is meant by the terms covalent bond and co-ordinate bond, indicating the difference between them.
.. Covalent bond is a bond where two atoms are .. shared betareeh two molecules - idem dendted by each .. ${ }^{2}$ decile. coordinate bound is where ono mole ale has donated two of the sharing electrons of the bond.
(e) Carbon monoxide contains two covalent bonds and one co-ordinate bond. Explain what is meant by the terms covalent bond and co-ordinate bond, indicating the difference between them.
Covalent bond is a bond where two atoms are smeured between two moRecules - idom dondted by each molecute coordinate boud is where ane mole ale has donated two of the shaving electicus of the bad.

(e) Carbon monoxide contains two covalent bonds and one co-ordinate bond. Explain what is meant by the terms covalent bond and co-ordinate bond, indicating the difference between them.

(e) Carbon monoxide contains two covalent bonds and one co-ordinate bond. Explain what is meant by the terms covalent bond and co-ordinate bond, indicating the difference between them.

Covalent bond a the bond present when two atoms share a pair of electrons in oposite spin with one elute ron coming from each atom. In Co redding e covalent bond the two atoms share a pairtaf electrons but both the electron cons from one aton called the donor atom.
10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(i) Give the reagent(s) and condition(s) required for this reaction.
\qquad
(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.
\qquad
\qquad
10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.
 pas water molecules due to its $\mathrm{O}-\mathrm{H}$. group. I-bramobetare cannot form hydrogen bonds and se the hyderphebic hydrocaben chain doesn't dissdre as it can only produce Vande-Waals fores which are not strong enough to accome water ability to hydurgen bond to its self.
10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.
\qquad polar nater modecules due to ts $\mathrm{O}-\mathrm{H}$. graup. 1-brombetetare carnad Pom hydagen bonds and se the hyderphatic hydrocaben chain doesn't dissdre as it con anly praduce Vande- Waals fores which are not strong enough to occome wates ability to hydurgen bond to its sely.
10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.

10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.

10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.

Butan-1-d has the O-H (Chydroxe group) thes means that it can form hydragen bends with the ptor water molecules and thefore dissthe
1-bomothutane carnot form hydrian benobs with water on it dos not contain hydrogan borided to antho highly electoneacative adom. it has vander uavis prees and is inoduble in uater.
10. (a) 1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a one-step reaction.

(ii) Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.

Butan-1-d has the O-H (Chydroxed group) this muans that it can foom hyderaen unds cith the ptar water moccules and thuyate divistec
1 -boomstutane cannst form hydrasen bends with uater os it das net contaur hydrogan berided to anther hyohly elecloneneative atom. it has vander uradis praces and is inetuble in uatus.

Q
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.

(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane.
\qquad
\qquad
\qquad
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.

(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane.
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.

(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane.
\qquad
\qquad
\qquad
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.

(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane.
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.

(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane.

The secondary carbonation which eventually becomes I 2-bromopropane is more stable that the prinaars carbocation which eventually becomes 1-bromopropane.
11. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.
(i) Draw the mechanism for this reaction.

8

$$
M-\begin{array}{ccc}
M & M & M \\
1 & i & C \\
1 & i & i \\
h & B r & M
\end{array}
$$

